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ABSTRACT 

In an observational longitudinal study, there can be time-varying 

exposure/treatment and time-varying confounders. When the confounders affect the 

exposure and prior exposure also has an impact on levels of confounders, there is 

treatment confounder feedback. To admit estimation of unbiased causal effects, these 

conditions need to be hold, exchangeability, positivity, consistency. The traditional 

method of conditioning on potential confounders does not meet these 3 conditions. 

Therefore, parameter estimates from traditional Cox model are biased casual effect 

estimates when the treatment confounder feedback exists. The marginal structural 

Cox model can be used to address this issue. By calculating and including inverse 

probability (IP) weights, the impact of confounding can be removed. Estimates from 

models with IP weights are interpreted as the causal effect that comparing always in 

treatment group vs. never in treatment group.  

In this study, first, I introduced basic concepts of causal inference, treatment 

confounder feedback and the marginal structural model; detailed steps of calculating 

IP weights and model fitting. In simulation study, I compared the time-dependent Cox 

models and the marginal structural Cox model; Also, for the marginal model, results 

using three types of IP weights were compared: un-stabilized weight, stabilized weight, 

and stabilized weight considering censoring. Performance metrics of each method 
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were evaluated based on their bias, percentage bias, empirical standard deviation, 

standard error and coverage probability of 95% confidence intervals. Aerobics Center 

Longitudinal Study (ACLS) data were used to explore the causal effect of 

cardiorespiratory fitness on hypertension incidence. Overweight or obese is a risk 

factor of hypertension. We hypothesized that cardiorespiratory fitness may help lower 

BMI via physical exercise, while reduced BMI or improved overweight status may 

promote cardiorespiratory fitness. Thus, there exists cardiorespiratory (treatment) 

overweight (confounder) feedback, and the marginal structural Cox model may 

deepen our understanding of association between hypertension and CRF through ACLS 

data. 
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CHAPTER 1 

INTRODUCTION 

1.1 CAUSAL INFERENCE 

To explore the effect of an intervention on an outcome, ideally, we want to 

have outcomes of subjects with intervention and outcomes of the same subjects 

without intervention. Then the intervention effect would be the difference under two 

intervention conditions. Usually, we don’t observe both outcomes. So, there have 

been many different proposed techniques, like randomization and matching to 

compare 2 groups of subjects (with and without exposure). Under various approaches, 

the difference between treatment groups is reasonable to represent the true effect of 

the intervention.  

Let random variable A be a binary treatment, and let a represent the value of A 

(a=1 as treated, and a=0 as untreated). Further, let Y represent the observed outcome 

and L represent a vector of confounders. Ya=1 is defined as the counterfactual outcome 

over all subjects in the population had they been treated. Ya=0 is defined as the 

counterfactual outcome over all subjects in the population had they been untreated. 

The average causal effect in population is defined as E[Ya=1]-E[Ya=0]. Because definition 

is not conditional on other variables, it is also called marginal causal effect. (1) 
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In randomized clinical trials, randomization can eliminate the effect of 

confounding, so results can be explained as causal effect. In an observational study, 

when the confounding is controlled, the conditional effect is a consistent estimator of 

the causal effect, E[Y=1|a=1] =E[Ya=1]. To get an unbiased estimate of the casual effect 

from an observational study, three assumptions need to hold (2): 

1) Exchangeability: 

Participants with treatment would have the same outcome as those without 

treatment had they not received the treatment. Similarly, participants without 

treatment would have the same outcome (as those with treatment) had they received 

the treatment. In other words, the observed treatment status is independent of 

counterfactual outcome, Ya is independent of A, for all a. 

2) Positivity: 

It is impossible to get the average effect of treatment, if all participants are in 

treatment group, or all people are untreated. A positive probability of accepting all 

treatment levels is required. Pr[A=a|L=l] >0, for all l with Pr[L=l] not equal to 0. 

3) Consistency: 

The observed outcome under the observed treatment status equals the 

counterfactual outcome of the observed treatment status. If A=a, then Y=Ya. 

1.2 TIME-VARYING TREATMENT AND CONFOUNDERS 

In a longitudinal study, we have time-varying treatment and time-varying 

confounders. Robins first introduced the effects of time-varying treatments in 

observational studies in 1986. (3) Suppose there are m+1 visits in the longitudinal 
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study. Let Aj be the time-varying treatment at time j (j=0, 1, 2, ..., m), Lj be the vector of 

time-varying confounders, Y be the outcome observed at time m+1. Allowing an 

overbar to denote the history, �̅�𝑗 is then the history of treatment, �̅�𝑗= (A0, A1, ...Aj);  �̅�𝑗 

is the history of confounders �̅�𝑗= (L0, L1, ...Lj). The lowercase letters represent the value 

of random variables. For binary treatment, if the treatment=1 at all visits, that is �̅�𝑗 = 

(1, 1, ..., 1), then it is "always treat". On the other hand, if �̅�𝑗 = (0, 0, ..., 0), then it is 

"never treat”. The marginal causal effect is defined as the difference between the 

above 2 counterfactual effects (always treat vs. never treat), 𝐸(𝑌�̅�=1̅) − 𝐸(𝑌�̅�=0̅). (4) 

Extending to time-varying treatments, to achieve valid causal inferences, all 

three conditions described in previous section need to hold. At each visit, if the time-

varying treatment is unconfounded conditional on previous treatment history and 

confounders history, then exchangeability holds. Thus, at each time point, conditional 

exchangeability holds. It can also be called sequential exchangeability. 

Sequential positivity is defined as, 

Pr(𝐴𝑗 = 𝑎𝑗| �̅�𝑗−1 = �̅�𝑗−1, �̅�𝑗 = 𝑙�̅�) > 0 , for all �̅�𝑗 and 𝑙�̅�, if 𝑃𝑟(�̅�𝑗−1 = �̅�𝑗−1, �̅�𝑗 = 𝑙�̅�) ≠ 0. 

Sequential consistency is defined as, 

If �̅� = �̅�, then 𝑌 = 𝑌�̅�. If �̅�𝑗−1 = �̅�𝑗−1, then �̅�𝑗 = �̅�𝑗
�̅�. (4) 

1.3 TREATMENT CONFOUNDER FEEDBACK 

In a longitudinal study, variables are observed repeatedly. At each time point, 

there is a set of observations including treatment and potential confounders. However, 

their relationship might complicate the analysis. When the confounders affect the 
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treatment and previous treatment also affects levels of confounders, there is 

treatment confounder feedback. (5) 

For example, in the Aerobics Center Longitudinal Study (ACLS), to investigate 

the effect of cardiorespiratory fitness (CRF) on hypertension incidence, participants 

were enrolled and were followed up from 1974 to2003. Details of ACLS study were 

described in Chapter 4. At each visit, information collected included age, sex, CRF, 

body mass index (BMI), smoking and heavy drinking status, family history of 

hypertension, diagnosis of hypertension, diabetes and hypercholesterolemia, etc. 

Overweight or obese is a risk factor of hypertension. The improved overweight or 

obese status will help increase CRF level. On the other hand, increased CRF level 

caused by the increased physical activity help reduce body fat percentage, BMI and 

change the overweight status. Therefore, there is treatment confounder feedback.  

1.4 TIME DEPENDENT COX MODEL AND WHY FAIL 

In the survival analysis setting, to estimate the effect of treatment on the 

outcome, one may estimate a time-dependent Cox model with baseline confounders. 

Another way is modeling the time-dependent Cox model with time-varying 

confounders. 

Let 𝐴𝑗 be the time-dependent exposure,  𝐿0 be the baseline covariate vectors, 

and 𝐿𝑗 be the time-varying covariate vectors. 𝜆0(𝑗) is the baseline hazard function. 

Model with baseline covariates, 

𝜆(𝑗|𝑍(𝑗)) = 𝜆0(𝑗) exp(𝜷𝒁(𝒋)) = 𝜆0(𝑗) exp(𝜷𝟏𝑨𝒋 +  𝜷𝟐𝑳𝟎 ) 
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Model with time-varying covariates, 

𝜆(𝑗|𝑍(𝑗)) = 𝜆0(𝑗) exp(𝜷𝒁(𝒋)) = 𝜆0(𝑗) exp(𝜷𝟑𝑨𝒋 +  𝜷𝟒𝑳𝒋 ) 

exp(𝛽1) is the constant hazard ratio of the exposure conditional on levels of 

baseline covariates. exp(𝜷3) is the hazard ratio of the exposure conditional on levels 

of covariates at time j. 

To estimate the parameter 𝜷, the partial likelihood method is used. The partial 

likelihood can be treated as the product of conditional probability that subject i fails 

from the risk set at time 𝑱𝒊. The partial likelihood is: 

𝐿(𝜷) = ∏  [  
𝒆𝒙𝒑 {𝜷𝒁𝒊(𝑱𝒊)}

∑ 𝒆𝒙𝒑 {𝜷𝒁𝒕(𝑱𝒊)}𝒕∈𝑹(𝒋≥𝑱𝒊)
  ]

𝜹𝒊
𝒏

𝒊=𝟏

 

where 𝑅(𝑗 ≥ 𝐽𝑖) is the risk set at time 𝐽𝑖, and  𝛿𝑖 (1=censored and 0=uncensored) is the 

censor status at time 𝐽𝑖. It is the product of conditional probability that subject i fails 

from the risk set at time 𝐽𝑖. 

By solving the derivative of log[L(β)=0], the solution, denoted as �̂�, is the 

maximum likelihood estimate of parameter β. The hazard at time j depends on the 

variable of treatment and confounders at that time. The regression effect of treatment 

A and confounders L are constant over time.  

The time dependent Cox model with baseline confounders only uses the 

baseline information, and the confounding can't be fully controlled. Thus, the 

estimation effect from this model would be biased.  
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For the time-dependent Cox model using time-varying confounders, by simply 

adjusting for the time-varying confounders, at each visit, sequential exchangeability 

would not hold. This is because the confounder at time j is influenced by previous 

exposure or treatment. (5) 

Marginal structural Cox models (MSMs) can be used to get the causal inference 

of treatment in the presence of treatment confounder feedback. An early variant of an 

MSM was developed by Dr. Marian Pugh in 1993, to solve the problem of missing data. 

(6) Dr. James Robins and Miguel Hernán from Harvard first published the general 

approach in 1999. (7) The idea is to apply weights to eliminate the confounding on 

treatment and/or censoring (in survival setting), thus allowing unbiased causal effects 

to be estimated. Marginal means the model estimates the marginal distribution 

instead of the conditional distribution. Structural refers to the causal inference.  

1.5 OUTLINE OF THESIS 

The main aim of this thesis is to understand the marginal structural Cox model 

and to apply this model in real data analysis. 

In Chapter 2, we will explain the inverse probability (IP) weighting and the 

marginal structural Cox model. In Chapter 3, there is a simulation study and 

comparisons are made between the results of a traditional time-dependent Cox model 

and a marginal structural Cox model. In Chapter 4, we will apply this method using the 

Aerobics Center Longitudinal Study (ACLS) data. In Chapter 5, there is discussion and 

conclusion. 
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CHAPTER 2 

IP WEIGHTING AND MARGINAL STRUCTURAL COX MODEL 

2.1 IP WEIGHTING  

Inverse probability (IP) weighting is a method commonly used in survey 

sampling to adjust for the sample selection process and get unbiased estimates. (8, 9) 

Each observation is weighted by the reciprocal of the predicted probability of the 

observed exposure status. There are 2 properties of IP weighting. First, using IP 

weights, exposure is unconfounded. Second, the effect of exposure on outcome is the 

same as in the true study population. (10) To briefly explain the idea of IP weighting, I 

simulated data with variable exposure, sex and outcome Y (sample size=2000). The 

distribution of sex is not balanced for two exposure groups. 

First, binary variable exposure (Yes=1 vs. No=0) was generated based on 

binomial distribution (n=2000, p=0.5). For exposed group, sex (women=1 vs. men=0) 

was generated based on binomial with p=0.3; while for unexposed group, sex was on 

binomial with p=0.7. Error was generated based on normal distribution with mean 

being 0 and variance being 0.01. Outcome Ys equal to the sum of intercept (true value 

0.5), effect of sex (true value 0.2 times sex), effect of exposure (true value -0.6 times  
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exposure) and random error. 𝑌 = 0.5 + 0.2 ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 − 0.6 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑒𝑟𝑟𝑜𝑟 

As Table 2.1, in unweighted count, the sex distribution between two exposure groups 

was different, so sex might be a confounder. IPW weight was calculated as 1/Pr 

[exposure| sex]. For example, the weight for men in unexposed group was 3.29, which 

meant contributing 3.29 times observation in pseudo population, that it 

306*3.29=1006. By adjusting for weights, the distribution of sex between two groups 

was balanced. If we conduct linear regression of Y on exposure, in unweighted case, 

the estimated effect of exposure was biased (point estimate -0.68). However, after 

adjusting for weights, the estimated effect was not biased (point estimate -0.60). 

Table 2.1 Sex distribution between unexposed and exposed groups 

 
Men Women 

Unweighted count   

Unexposed 306 (30.42%) 700 (70.42%) 

Exposed 700 (69.58%) 294 (29.58%) 

Weights 
  Unexposed 3.29 1.42 

Exposed 1.44 3.38 

Weighted count 
  Unexposed 1006 (50%) 994 (50%) 

Exposed 1006 (50%) 994 (50%) 
 

 

There are different ways of calculating the weight. Weights should be chosen 

so that 1) the exposure is unconfounded; 2) effects in pseudo population are the same 

as in the true study population; and 3) weights are ‘’as close as possible to 1” to 

prevent extreme weights and reduce variance. (10) 
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In the context of time-dependent treatment, the weights are time-varying at 

different observed times or visits for the same subject. From the start (j=0) to the end 

of follow-up (j=m), IP weighting is based on the overall probability of the subject 

receiving his or her own observed history of treatment 𝐴𝑗=0to 𝐴𝑗=𝑚, the product of 

visit specific probabilities. According to published papers, different calculations lead to 

weights that are either un-stabilized or stabilized. (1, 10, 11) An un-stabilized weight is 

the inverse of the estimated probability that a subject received the observed 

treatment, given the baseline covariates 𝐿0 (not time-varying), history of treatments 

up to visit time j-1, �̅�𝑗−1, and history of confounder up to visit time j, �̅�𝑗. If the 

probability is small, then the inverse of probability would be large and large weights 

lead to unstable results. 

 

Stabilized weights of treatment have the same denominator, instead of 1 as the 

numerator, it uses the estimated probability that a subject received the observed 

treatment, given the baseline covariates and history of treatments up to visit time j-1. 

History of confounder was not included. In this way, the variability of stabilized 

weights is smaller and the resulting calculations of the weights are much closer to 1. 

 

The right censoring is very common to be seen in survival data, which is caused 

by lost to follow up or the end of study. Most of time, we assume that censoring is 

informative. Applying the same idea of dealing confounders by weights, weights can 

𝑤𝑚
𝑇 = ∏

1

Pr (𝐴𝑗 = 𝑎𝑗|�̅�𝑗−1 = �̅�𝑗−1, 𝐿0 = 𝑙0,  �̅�𝑗 = 𝑙�̅�)

𝑚

𝑗=0

 

𝑠𝑤𝑚
𝑇 = ∏

Pr (𝐴𝑗 = 𝑎𝑗|�̅�𝑗−1 = �̅�𝑗−1, 𝐿0 = 𝑙0)

Pr (𝐴𝑗 = 𝑎𝑗|�̅�𝑗−1 = �̅�𝑗−1, 𝐿0 = 𝑙0,  �̅�𝑗 = 𝑙�̅�)

𝑚

𝑗=0

 



www.manaraa.com

10 
 

solve the problems of informative censoring. The denominator of stabilized weights for 

censoring is the probability of subjects not censored at time j, given their treatment 

history till j-1, baseline covariates, and the history of confounder up to time j-1. The 

numerator is the probability without further conditional on the history of the 

confounder. The final stabilized weights are product of stabilized weights of treatment 

and censor, 𝑠𝑤𝑚
𝑇 × 𝑠𝑤𝑚

𝐶. 

 

 

The treatment can be binary, multinomial, and continuous. The inverse 

probability weights can be calculated from different models. For example, to fit the 

pooled logistic regression for binary treatment; to fit the multinomial regression for 

categorical treatment. Next, we introduce the detailed calculation of stabilized weights 

of treatment and censoring by fitting four pooled logistic models. 

Step 1: Data preparation. Data are organized into the long format (for each 

subject, there are multiple rows of observations – one observation per time period). 

Variables include participants’ ID, start time of each visit 𝑇𝑗, end time of visit 𝑇𝑗+1, 

exposure at the start of the visit interval 𝐴𝑗 , potential confounders (time-independent 

confounders 𝐿0 and time-varying confounders 𝐿𝑗), censor indicator𝐶𝑗, and outcomes 𝑌𝑗.  

Step 2: Fitting pooled logistic models and getting the estimated probability. 

Model 1: logit pr(Aj =1) = A̅j−1  +  L0 . If the observed treatment Aj = 1, then the 

estimated probability of the observed treatment equals to the probability of treatment 

𝑠𝑤𝑚
𝐶 = ∏

Pr (𝐶𝑗 = 0|𝐶�̅�−1 = 0, �̅�𝑗−1 = �̅�𝑗−1, 𝐿0 = 𝑙0)

Pr (𝐶𝑗 = 0|𝐶�̅�−1 = 0, �̅�𝑗−1 = �̅�𝑗−1, 𝐿0 = 𝑙0,  �̅�𝑗−1 = 𝑙�̅�−1)

𝑚

𝑗=0
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at time j. If Aj = 0, then the estimated probability of the observed treatment equals to 

1 minus the estimated probability of treatment. Model 2:  logit pr(Aj =1) = A̅j−1  +

 L0 + L̅j.  Model 3: logit pr(Cj = 0) = A̅j−1  +  L0. We assume that once subjects are 

censored, they will not come back to the study. We estimate the probability that a 

subject remains uncensored at time j. Model 4: logit pr(Cj =1) = A̅j−1  +  L0 + L̅j−1. 

Step 3: Combing weights of treatment and censoring. The numerator of the 

stabilized weights 𝑠𝑤𝑚
𝑇 × 𝑠𝑤𝑚

𝐶, can be estimated by multiplying the estimated 

probability of the observed treatment at time j (from Model 1) and probability of 

remaining uncensored till time j (from Model 3). The denominator of the weights can 

be estimated by multiplying the estimated probability from Model 2 and Model 4.   

Step 4: So far, weights are calculated at each time point during follow-up. In 

the final step, we need to calculate the cumulative product over all previous times up 

to j. For example, weights at time 3, are production of estimated 𝑠𝑤𝑚
𝑇 × 𝑠𝑤𝑚

𝐶  

(results of step 3) at time 1, time 2 and time 3. Weight at time 5 are production of 

weights of the first 5 times.  

If the models to estimate the weights are correctly specified, then by 

incorporated the calculated weight into the final model of interest, the confounding of 

treatment and censor will be eliminated.  

To estimate the inverse probability weights, there is an R package “ipw”. For 

longitudinal data, the iptm function can compute weights at each time point during 
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follow-up. The exposure can be continuous, binomial, multinomial, or ordinal. Both 

stabilized and un-stabilized weights can be estimated.  

2.2 MARGINAL STRUCTURAL COX MODEL 

By using IP weights, the confounding due to time-dependent covariates is 

removed, and the hazard function of the marginal structural Cox model is as follows, 

𝜆𝐽�̅� = 𝜆0(𝑗) exp(𝛽1𝐴𝑗) 

Parameter β can be estimated using the partial likelihood method. 95% 

confidence interval for β can be calculated using bootstrap methods or by computing 

analytic variance estimates, or using robust variance estimates. 

�̂� ± 1.96 × √𝑣𝑎𝑟(𝛽)̂  

The outcome variable of marginal Cox model is a counterfactual since it uses 

the pseudo-population. Therefore, it is called structural mean model. The IP weighted 

estimates causation of the marginal structural model. Parameters can be interpreted 

as the mean hazard ratio of event if everybody was always treated comparing to if 

everybody was never being treated.
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CHAPTER 3. SIMULATION STUDY 

The aims of this chapter are: Firstly, to compare the estimates from the time 

dependent Cox models and the marginal structural Cox model. Another aim is to 

compare the performance of un-stabilized weights and stabilized weights in the 

marginal structural model. In addition, we will check how estimates vary when the 

sample size, censoring rate or the true effects change.  

3.1 GENERATING AND PREPARING DATA 

500 samples, each with n subjects (n=500 or n=2500) and 10 visits were 

generated according to the algorithm described in Young et al (2008). (12) 

Corresponding SAS code is provided at https://cdn1.sPH.harvard.edu/wp-

content/uploads/sites/148/2012/10/simulate_snaftm.txt. 

For each sample,  

Step 1: Simulate the counterfactual 𝑇0 from an exponential distribution with 

scale parameter 𝜆0 (𝜆0 = 0.01 or 𝜆0 = 0.1). Define 𝐿−1 =  𝐴−1 = 𝑌0 = 0. For each j ϵ 

[0, 9] implement steps 2-4: 

Step 2: Simulate time varying confounders 𝐿𝑗 from 

 



www.manaraa.com

14 
 

𝑙𝑜𝑔𝑖𝑡 [[Pr(𝐿𝑗 = 1|  �̅�𝑗−1, �̅�𝑗−1, 𝑇0, 𝑌𝑗 = 0; 𝜷)] = 𝛽0 + 𝛽1𝐼(𝑇0 < 𝑐) +

𝛽2𝐴𝑗−1 + 𝛽3𝐿𝑗−1，set 𝜷= (𝛽0, 𝛽1, 𝛽2, 𝛽3)=(log(3/7),2, log(1/2),log(3/2)) and c=30 

Step 3: Simulate 𝐴𝑗 from 𝑙𝑜𝑔𝑖𝑡[𝐴𝑗 = 1|�̅�𝑗 , �̅�𝑗−1, 𝑌𝑗 = 0, 𝜶] = 𝛼0 + 𝛼1𝐿𝑗 +

𝛼2𝐿𝑗−1 +  𝛼3𝐴𝑗−1，set 𝜶= (𝛼0,𝛼1,𝛼2,𝛼3)=(log (2/7), 1/2, 1/2, log(4)) 

Step 4: simulate 𝑌𝑗+1and possible T 

If 𝑇0 > ∫ exp{𝜑𝑎 × 𝐴𝑚} 𝑑𝑚
𝑗+1

0
 then 𝑌𝑗+1=0;  

else 𝑌𝑗+1=1, T=𝑗 + (𝑇0 − ∫ exp{𝜑𝑎 × 𝐴𝑚} 𝑑𝑚
𝑗

0
) exp{−𝜑𝑎 × 𝐴𝑗} 

( 𝜑𝑎=0.3, 0 or -0.3) 

To explore the effect of sample size on effect estimation, for each sample, we 

generate n=500 subjects as an example of small sample size, and n=2500 subjects as an 

example of a large sample size.  For step 1, the counterfactual time was generated from 

an exponential distribution with constant rate of monthly events 𝜆0 throughout the 

follow-up. 𝜆0 = 0.01 is for rare incidence of event. 𝜆0 = 0.1 is for relatively common 

occurrence of event. It also defined that before the start of study, there is no 

confounder 𝐿−1 = 0, subjects are not treated 𝐴−1 = 0, remain uncensored and 

without event occurrence 𝑌0 = 0. 

Step 2 defines time varying confounders, which are affected by the previous 

treatment 𝐴𝑗−1 and confounders 𝐿𝑗−1. c is an arbitrary cutoff point, which affects the 

degree to which 𝑇0 affects 𝐿𝑗  for a chosen value of c. For step 3, treatment is affected 
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by confounders observed this time 𝐿𝑗 and previous time 𝐿𝑗−1, and previous treatment 

𝐴𝑗−1. In step 4, true value of marginal effect of treatment is 𝜑𝑎. Three values were 

simulated respectively, negative effect -0.3, null effect 0 and positive effect 0.3. 

From these data generation steps, we see that 𝐿𝑗 is associated with outcome 

𝑌𝑗+1 via indicator variable. 𝐿𝑗 predicts future treatment 𝐴𝑗  𝑎𝑛𝑑 𝐴𝑗+1; 𝐴𝑗−1 has an 

impact on 𝐿𝑗. There is treatment-confounder feedback. 

Data structure 

Table 3.1 shows the ‘long-format data structure. For each subject, there are at 

most 10 visits. For example, there are 10 visits for ID=1 and ID=2. Only 1 visit for ID=13, 

that is because the event occurs at time=0.93188. 7 visits for ID=20 because the event 

occurs at time=8.513671875. Time was cut into visit intervals from tpoint2 to tpoint, 0-

1, 1-2, 2-3, …, 9-10. During each time interval, A is the treatment status at the start of 

time, Am1 is the previous treatment; L is the confounder, Lm1 and Lm2 are the 

confounder history of previous 2 visits. Y is the binary outcome. If no event occurs at 

the end of the 10th time interval, this subject was censored, censor_r=1. Similarly, Ym is 

the outcome for the end of previous visits. T0 is the generated counterfactual time for 

censored subjects, T is the observed time for participants without censoring.  

Table 3.1 Example of long-formatted data structure 

ID A Am1 L Lm1 Lm2 Y Ym T T0 IT0 tpoint tpoint2 censor_r 

1 1 0 1 0 0 0 0 
 

21.140 1 1 0 0 

1 0 1 1 1 0 0 0 
 

21.140 1 2 1 0 

1 1 0 1 1 1 0 0 
 

21.140 1 3 2 0 

1 1 1 1 1 1 0 0 
 

21.140 1 4 3 0 
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1 1 1 0 1 1 0 0 
 

21.140 1 5 4 0 

1 0 1 1 0 1 0 0 
 

21.140 1 6 5 0 

1 0 0 1 1 0 0 0 
 

21.140 1 7 6 0 

1 0 0 1 1 1 0 0 
 

21.140 1 8 7 0 

1 0 0 1 1 1 0 0 
 

21.140 1 9 8 0 

1 0 0 0 1 1 0 0 
 

21.140 1 10 9 1 

2 0 0 0 0 0 0 0 
 

181.648 0 1 0 0 

2 1 0 1 0 0 0 0 
 

181.648 0 2 1 0 

2 1 1 1 1 0 0 0 
 

181.648 0 3 2 0 

2 0 1 1 1 1 0 0 
 

181.648 0 4 3 0 

2 1 0 0 1 1 0 0 
 

181.648 0 5 4 0 

2 1 1 0 0 1 0 0 
 

181.648 0 6 5 0 

2 1 1 1 0 0 0 0 
 

181.648 0 7 6 0 

2 0 1 0 1 0 0 0 
 

181.648 0 8 7 0 

2 1 0 0 0 1 0 0 
 

181.648 0 9 8 0 

2 0 1 0 0 0 0 0 
 

181.648 0 10 9 1 

13 1 0 1 0 0 1 0 0.932 0.932 1 1 0 0 

20 0 0 1 0 0 0 0 8.514 8.514 1 1 0 0 

20 0 0 1 1 0 0 0 8.514 8.514 1 2 1 0 

20 1 0 1 1 1 0 0 8.514 8.514 1 3 2 0 

20 1 1 0 1 1 0 0 8.514 8.514 1 4 3 0 

20 1 1 1 0 1 0 0 8.514 8.514 1 5 4 0 

20 1 1 1 1 0 0 0 8.514 8.514 1 6 5 0 

20 0 1 0 1 1 0 0 8.514 8.514 1 7 6 0 

20 0 0 1 0 1 0 0 8.514 8.514 1 8 7 0 

20 0 0 1 1 0 1 0 8.514 8.514 1 9 8 0 
 

 

3.2 COMPUTING WEIGHT 

A pooled logistic regression was fitted to estimate IP weights. Four models were 

fitted. Model 1 is for the numerator of 𝑠𝑤𝑚
𝑇, logit pr(A=1) = Am1; model 2 for 

denominator of 𝑠𝑤𝑚
𝑇, logit pr(A=1) = Am1+L+Lm1; Model 3 for numerator of 𝑠𝑤𝑚

𝐶 , 

logit pr(censor_r=0) =Am1; model 4 for denominator of 𝑠𝑤𝑚
𝐶, logit pr(censor_r=0) 

=Am1 + Lm1 +Lm2.  
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Predictions of treatment A from model 1 and 2 are estimated. To get the 

probability of observed treatment, we did the following calculation. If treatment A=1, 

then probability of observed treatment equals the prediction; if treatment A=0, then 

probability of observed treatment equals 1 minus the prediction. The time varying 

weight is the production of previous weight from the visit 1 to the end of current visit. 

Prediction of censoring is estimated from model 3 and 4. The time-varying weight for 

censoring is the production of previous weight from the first visit to the end of current 

visit. 

Three different weights are calculated, 

𝑤𝑚
𝑇 = ∏

1

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 2

𝑚

𝑗=0

 , 

𝑠𝑤𝑚
𝑇 = ∏

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 1

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 2

𝑚

𝑗=0

 , 

𝑠𝑤𝑚
𝑇 × 𝑠𝑤𝑚

𝐶 = ∏
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 1 𝑎𝑛𝑑 3 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑚𝑜𝑑𝑒𝑙 2 𝑎𝑛𝑑 4

𝑚

𝑗=0

 . 

The SAS code is attached, please see Appendix A.  

3.3 MODEL FITTING 

The marginal Cox models with 3 different weights were fitted using function 

Coxph() in the R package ‘survival’. The dependent variable was the time and event 

status, and independent variable was treatment. Cluster () was specified to obtain 
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robust sandwich variance estimates of the coefficients. The Efron approximation was 

used for handling ties (multiple events at the same discrete time point).  

To compare results from the marginal structural Cox model, the time-

dependent Cox models were also fitted. One was a time-dependent model with 

baseline covariates L0. Another model was fitted using time-dependent confounder.  

In the longitudinal data, one subject has several observations. To get the 

variance of estimators, the interclass correlation needs to be considered because the 

observations are not independent. Due to the computational difficulty of getting the 

exact estimates of variance, the robust standard errors were estimated based on the 

modified sandwich variance estimator. Based on the normal approximation, the 95% 

confidence intervals can be computed by ± 1.96 times the robust standard error. The 

variance could also have been obtained by bootstrapping. However, that takes a 

considerable amount of time to run, so in this study, the robust variance estimates 

were used. 

3.4 PERFORMANCE METRICS 

The performance of different models was assessed by the following measures: 

Bias:  ∑ (𝜑�̂� − 𝜑)𝑁
𝑖=1 /𝑁, the average difference between N (N=1000 for large 

sample size and N=500 for small sample size) estimated parameters and true value. 

Percentage Bias:  
𝐵𝑖𝑎𝑠

𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 𝜑
× 100%. Only for true value -0.3 and 0.3. 

Empirical Standard Deviations: Standard deviation of N estimated parameters. 
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Standard Error: the average of N estimated standard errors of parameters. 

Means of Standard Error: 𝐵𝑖𝑎𝑠2 + Empirical Standard Deviation2 

Coverage Probability of 95% confidence intervals: proportion of N samples in 

which the true parameters are contained in the 95% confidence interval. 

3.5 RESULTS 

Results are listed in Table 3.2, 3.3 and 3.4. 

Models 

The marginal Cox model with stabilized weights 𝑠𝑤𝑚
𝑇 and 𝑠𝑤𝑚

𝑇 × 𝑠𝑤𝑚
𝐶  

performed better than the model using un-stabilized weights.  The model with two 

stabilized weights had smaller bias and empirical standard deviations, and the coverage 

probability reached around 95%. For the two marginal structural models with stabilized 

weights, bias, empirical standard deviations, standard error, MSE and coverage 

probability were comparable. Censoring in the generated data was not informative. 

When there is informative censoring, 𝑠𝑤𝑚
𝑇 × 𝑠𝑤𝑚

𝐶  is expected to behave better than 

𝑠𝑤𝑚
𝑇. 

For the two time-dependent Cox models, the model using time-varying 

covariates had smaller bias and bigger coverage than model using baseline covariates. 

However, the bias was still big and the real coverage probability didn’t reach 95%. 

Comparing estimates of marginal Cox model with time-dependent Cox models, 

marginal structural Cox models had smaller bias. The marginal models with stabilized 

weights and two time-dependent Cox models had similar empirical standard 
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deviations. Their empirical standard deviations were comparable to model based 

standard error, which indicated that the model fitted well. MSE was a combination of 

bias and empirical standard deviation. Marginal Cox model with stabilized weights 

𝑠𝑤𝑚
𝑇 and 𝑠𝑤𝑚

𝑇 × 𝑠𝑤𝑚
𝐶  had the smallest MSE. 

Sample size 

Comparing to the performance metrics in small sample size (n=500), results 

from large sample (n=2500) had smaller bias, empirical SD, model based SE, and MSE.  

Incidence rate of event 

The censoring rate in the simulated data is about 90% for rare event 𝜆0 = 0.01, 

and about 30%-40% for common event,  𝜆0 = 0.1. The coverage probability was larger 

for bigger incidence rate or smaller censoring rate. Especially, in the two time-varying 

Cox models, the coverage improved a lot when incidence rate increase from 0.01 to 

0.1. 

True effect of treatment 

Performance metrics of models were consistent in simulated data with three 

different true effect of treatment, null effect, positive and negative effects. Different true 

effects of exposure don't; impact the performance of models. 
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Table 3.2 Performance Metrics of models with null true effect 
 

True effect=0, 𝜆0=0.01, sample size=500, censor rate=0.904 

Models Bias %bias StDev SE MSE Coverage 

Marginal Cox Model 

w 0.064 NA 0.968 0.697 0.941 0.844 

sw 0.025 NA 0.326 0.329 0.107 0.950 

swc 0.025 NA 0.327 0.331 0.108 0.950 

Time dependent Cox Model 
     Baseline L0 0.338 NA 0.298 0.296 0.203 0.804 

Time dependent Lm 0.293 NA 0.300 0.296 0.176 0.834 

True effect=0, 𝜆0=0.01, sample size=2500, censor rate=0.904 

Marginal Cox Model 
 w 0.008 NA  0.416 0.390 0.173 0.944 

sw 0.007 NA  0.152 0.146 0.023 0.942 

swc 0.008 NA 0.153 0.147 0.024 0.936 

Time dependent Cox Model 
     Baseline L0 0.332 NA  0.131 0.130 0.127 0.286 

Time dependent Lm 0.283 NA  0.132 0.131 0.098 0.444 

True effect=0, 𝜆0=0.1, sample size=500, censor rate=0.369 

Marginal Cox Model 

w 0.025 NA  0.478 0.391 0.229 0.880 

sw 0.008 NA  0.125 0.122 0.016 0.950 

swc 0.009 NA 0.124 0.122 0.016 0.954 

Time dependent Cox Model 
     Baseline L0 0.042 NA  0.118 0.115 0.016 0.926 

Time dependent Lm 0.039 NA  0.118 0.115 0.015 0.936 

True effect=0, 𝜆0=0.1, sample size=2500, censor rate=0.368 

Marginal Cox Model 

w 0.001 NA  0.207 0.199 0.043 0.942 

sw 0.000 NA  0.057 0.054 0.003 0.942 

swc 0.000 NA 0.057 0.054 0.003 0.944 

Time dependent Cox Model 
     Baseline L0 0.035 NA  0.054 0.051 0.004 0.878 

Time dependent Lm 0.031 NA  0.054 0.051 0.004 0.896 
 

Note: w refers to un-stabilized weight; sw is stabilized weight; swc is stabilized 
weight considering censoring. StDev is empirical standard deviations. 
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Table 3.3 Performance Metrics of models with true effect being 0.3 
 

True effect=0.3, 𝜆0=0.01, sample size=500, censor rate=0.888 

Models Bias %bias StDev SE MSE Coverage 

Marginal Cox Model 
     w 0.075 24.867 0.868 0.667 0.759 0.862 

sw 0.003 1.004 0.317 0.310 0.100 0.952 

swc 0.004 1.324 0.318 0.312 0.101 0.952 

Time dependent Cox Model 
    Baseline L0 0.334 111.336 0.288 0.278 0.194 0.784 

Time dependent Lm 0.283 94.348 0.287 0.279 0.163 0.828 

True effect=0.3, 𝜆0=0.01, sample size=2500, censor rate= 0.888 

Marginal Cox Model 
     w 0.009 3.164 0.442 0.376 0.195 0.894 

sw 0.005 1.811 0.140 0.138 0.020 0.952 

swc 0.006 2.130 0.140 0.139 0.020 0.950 

Time dependent Cox Model 
    Baseline L0 0.335 111.590 0.122 0.123 0.127 0.214 

Time dependent Lm 0.284 94.806 0.123 0.123 0.096 0.366 

       

True effect=0.3, 𝜆0=0.1, sample size=500, censor rate= 0.306 

Marginal Cox Model 
     w 0.008 2.773 0.440 0.386 0.194 0.914 

sw 0.002 0.558 0.126 0.117 0.016 0.926 

swc 0.002 0.706 0.126 0.117 0.016 0.926 

Time dependent Cox Model 
    Baseline L0 0.038 12.555 0.117 0.110 0.015 0.926 

Time dependent Lm 0.034 11.280 0.117 0.111 0.015 0.934 

True effect=0.3, 𝜆0=0.1, sample size=2500, censor rate= 0.307 

Marginal Cox Model 
     w -0.007 -2.196 0.217 0.194 0.047 0.928 

sw -0.002 -0.770 0.053 0.052 0.003 0.952 

swc -0.002 -0.706 0.053 0.052 0.003 0.956 

Time dependent Cox Model 
    Baseline L0 0.033 11.157 0.049 0.049 0.004 0.896 

Time dependent Lm 0.030 9.928 0.050 0.049 0.003 0.908 
 

Note: w refers to un-stabilized weight; sw is stabilized weight; swc is stabilized 
weight with censoring. StDev is empirical standard deviations. 
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Table 3.4 Performance Metrics of models with true effect being -0.3 
 

True effect=-0.3, 𝜆0=0.01, sample size=500, censor rate= 0.916 

Models Bias %bias StDev SE MSE Coverage 

Marginal Cox Model 

w 0.094 31.365 1.006 0.725 1.021 0.834 

sw 0.006 -2.067 0.357 0.354 0.127 0.960 

swc 0.007 -2.208 0.358 0.355 0.128 0.956 

Time dependent Cox Model 
     Baseline L0 0.331 -110.373 0.323 0.319 0.214 0.814 

Time dependent Lm 0.280 -93.411 0.322 0.320 0.182 0.864 

True effect=-0.3, 𝜆0=0.01, sample size=2500, censor rate= 0.917 

Marginal Cox Model 
 w 0.013 -4.197 0.474 0.414 0.225 0.914 

sw 0.002 0.584 0.163 0.158 0.026 0.938 

swc 0.001 0.411 0.164 0.159 0.027 0.936 

Time dependent Cox Model 
     Baseline L0 0.319 -106.379 0.146 0.141 0.123 0.376 

Time dependent Lm 0.270 -90.109 0.146 0.142 0.094 0.538 

True effect=-0.3, 𝜆0=0.1, sample size=500, censor rate= 0.422 

Marginal Cox Model 

w 0.020 6.692 0.467 0.400 0.218 0.900 

sw 0.001 0.316 0.133 0.129 0.018 0.952 

swc 0.001 0.385 0.133 0.129 0.018 0.952 

Time dependent Cox Model 
     Baseline L0 0.031 -10.222 0.123 0.121 0.016 0.946 

Time dependent Lm 0.027 -8.882 0.123 0.121 0.016 0.944 

True effect=-0.3, 𝜆0=0.1, sample size=2500, censor rate= 0.422 

Marginal Cox Model 

w 0.004 1.171 0.209 0.203 0.044 0.942 

sw 0.000 -0.118 0.054 0.057 0.003 0.966 

swc 0.000 -0.133 0.054 0.057 0.003 0.968 

Time dependent Cox Model 
     Baseline L0 0.033 -10.972 0.050 0.054 0.004 0.926 

Time dependent Lm 0.029 -9.715 0.050 0.054 0.003 0.938 
 

Note: w refers to un-stabilized weight; sw is stabilized weight; swc is stabilized 
weight considering censoring. StDev is empirical standard deviations. 
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To summarize, First, the estimate from the time dependent Cox model using 

time-varying confounders was better than the estimate from model using baseline 

confounders. Although the time-dependent Cox model is commonly used in practice, 

the estimates remained biased when there was treatment confounder feedback based 

on the simulation results.  

Second, when there is treatment confounder feedback, the marginal structural 

Cox model should be applied to get unbiased estimates of the casual inference effect. 

Estimates with stabilized weights had smaller bias and variability, and larger coverage 

probability than those using un-stabilized weights. When existence of informative 

censoring, estimates with the stabilized weight considering censoring are expected to 

perform better than those without considering censoring. 
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CHAPTER 4. ACLS DATA 

Hypertension is a very common chronic disease and affects the health of 

numerous people. The risk of developing high blood pressure includes, age, race, 

family history, being overweight or obese, not being physical active, smoking, too much 

sodium diet, too little potassium in diet, heavy drinking, stress and some chronic 

diseases. (13) 

Cardiorespiratory fitness (CRF) measures the ability of the circulatory and 

respiratory systems to supply oxygen to skeletal muscles during sustained physical 

activity. Studies have shown that CRF is inversely associated with the risk of 

hypertension. (14, 15) 

Both CRF and overweight can work as independent risk factors of hypertension. 

Increased CRF level which caused by increased physical activity can help reduce body 

fat percentage, body mass index (BMI), thus improve overweight or obese status. The 

reduced BMI also help increase cardiorespiratory fitness level subsequently. Therefore, 

there exists a treatment-confounder feedback. That is, CRF-overweight feedback. 

In this study, we want to explore that effect of CRF on hypertension incidence 

by using the marginal structural Cox model. 
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4.1 DATASET DESCRIPTION 

Started in 1970, the Aerobics Center Longitudinal Study (ACLS) is a 

prospective cohort study aiming to investigate health outcomes associated with 

cardiorespiratory fitness and physical activity. In our study, 14290 participants who 

have completed a baseline examination at the Cooper Clinic (Dallas, Texas) during 

1974–2003 were included. All participants were free of hypertension at baseline; at 

least 2 visits are available for each subject; they were able to achieve at least 85% of 

age-predicted maximal heart rate (220 minus age in years) at each visit; were free of 

history of heart attack, stroke, cancer, and abnormal ECG at baseline; subjects whose 

BMI less than 18.5 or greater than 80 were excluded; all have complete data on 

blood pressure, glucose, cholesterol, fitness, and BMI. 

The study protocol was approved annually by the Institutional Review Board of 

the Cooper Institute and all participants provided written consent to participate in this 

follow-up study. 

Exposure/ Treatment 

Cardiorespiratory fitness (CRF) level was assessed as the duration of a 

symptom-limited maximal treadmill exercise test using a modified Balke protocol. (16, 

17) The treadmill speed was 88 m∙min-1 for the first 25 min. During this time, the grade 

was 0% for the first minute, 2% the second minute and increased 1% for each minute. 

After 25 min, the grade remained constant while the speed increased 5.4 m∙min-1 each 

minute until test termination. Patients were encouraged to give a maximal effort 
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during the test. Maximal metabolic equivalents (METs, 1 MET = 3.5 ml O2 uptake ∙ kg −1 

∙ min −1) were estimated from the final treadmill speed and grade. Maximal treadmill 

time was measured in minutes. 

Subjects were divided into 3 groups, low (lowest 20%), middle (middle 40%) 

and high (upper 20%), according to the quantile of maximal treadmill time in each sex- 

and age-group (20-39, 40-49, 50-59, 60+) specific distribution from the overall ACLS 

population. The exposure or treatment was time-varying. 

Outcome and censoring 

All participants were followed from the date of their baseline examination until 

their occurrence of hypertension or December 31, 2003. Hypertension was defined as 

physician diagnosed high blood pressure or blood pressure >=140/90 mmHg. If a 

subject was diagnosed as hypertension, then the event occurs. While if a subject 

remained not being diagnosed as hypertension at the end of study, then this person 

was defined as censored. In log format data structure, the start and end of visits were 

from 0-1, 1-2, 2-3, …, until 25-26. 

Confounders 

The baseline clinical examination included anthropometry, resting blood 

pressure and ECG, fasting blood chemistry analysis, personal and family health history, 

and a maximal graded exercise test. Examination methods and procedures followed a 

standard manual of operations, as described previously. (16) 
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After checking the value of variables, sex and family history of hypertension 

were treated as fixed confounders. Since age, BMI, diabetes, hypercholesterolemia, 

smoking and heavy drinking changed their values during follow-up, they were treated 

as time-varying confounders.  

If participants reported the parental hypertension during all study periods, the 

family history of hypertension of this participant was defined as ‘Yes’. Otherwise, ‘No’. 

Body mass index [BMI = weight (kg) / height (m) 2] was computed from measured 

height and weight. Overweight or obese was defined if the BMI > 25 Kg/m2. Diabetes 

was defined as physician diagnosed diabetes, insulin use, or glucose>=126 mg/dL; and 

hypercholesterolemia was defined as by total cholesterol ≥240 mg/dl, or physician 

diagnosed hypercholesterolemia. Information on smoking habits (current smoker or 

not), heavy drink (alcohol drinks >14 per week or not) was obtained from a 

standardized questionnaire. 

4.2 ANALYSIS USING MARGINAL STRUCTURAL COX MODEL 

4.2.1 Data Preparation 

Data were organized into long format as described in Chapter 3. Each subject 

had at least 2 rows of observations. Variables list were ID, number of visit, start of each 

visit, end of each visit, occurrence of hypertension, censor indicator, time dependent 

variables (CRF levels, overweight or obese, age, diabetes, hypercholesterolemia, 

smoking and heavy drinking status), time independent variables (sex and family history 

of hypertension), and history of previous CRF levels. 
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Means and standard deviation were used to describe the baseline continuous 

variables. Frequency and proportion was used to describe discrete variables. Baseline 

differences between three CRF groups were tested using ANOVA and Chi square test.  

4.2.2 IP Weights And Marginal Structural Cox Model 

Calculation of IP weights was as we described in Chapter 3. Specific, a 

cumulative logit model to the ordinal data was fitted to estimate the numerator of 

𝑠𝑤𝑚
𝑇. The history of exposure is the previous CRF level (low CRF is the reference 

group). Covariates includes sex, family history of hypertension, BMI, age, smoking and 

heavy drinking status, diabetes and hypercholesterolemia). Here, only baseline 

covariates L0  were used. 

Model 1: cumlogit (CRFj ) = CRF_middlej−1 + CRF_highj−1 + L0 

Model 2 was used to estimate the denominator of 𝑠𝑤𝑚
𝑇. The time-varying 

covariates Lj were included. cumlogit (CRFj ) = CRF_middlej−1 + CRF_highj−1 + Lj 

Following the methods described in Chapter 3, prediction of fitness level was 

estimated from model 1 and 2; the stabilized time-varying weights, 𝑠𝑤𝑚
𝑇  was 

calculated.  

The marginal Cox model was estimated using Coxph() function in the R package 

survival. The time-dependent Cox models using baseline covariates and time-varying 

covariates were also fitted. The estimated parameters from the marginal structural 
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Cox model can be explained as the causal effects of cardiorespiratory fitness on 

hypertension incidence. Robust variance estimates were obtained. 

4.2.3 Results 

Baseline characteristics are shown in Table 4.1. Among the total 14,290 

participants, there were 1,280 subjects in low CRF group, 5,079 in middle group and 

7,931 in high CRF group. Subjects who had higher CRF were elder, had less body 

weight, BMI, lower blood pressure and total cholesterol. The maximal METs and 

treadmill time duration were higher with increasing CRF level. People in high CRF 

group had large proportions of women, not current smokers, not diagnosed with 

diabetes and hypercholesterolemia. The proportions of heavy drinking and family 

history of hypertension were the highest in high CRF group. 

Table 4.1 Descriptive statistics of baseline variables in ACLS study 1974-2003 

Variables 
Low CRF 
(n=1280) 

Middle CRF 
(n=5079) 

High CRF 
(n=7931) p value 

Age (year) 41.5±41.1 42.5±42.3 43.7±43.6 <.0001 

Weight (Kg) 86.8±86 81±80.7 75.9±75.6 <.0001 

Body mass index (Kg/m2) 27.8±27.6 25.8±25.7 24.2±24.2 <.0001 

Maximal METs  8.7±8.6 10.6±10.6 13.3±13.2 <.0001 

Treadmill time duration (min) 11.6±11.4 15.7±15.7 21.3±21.2 <.0001 

Systolic blood pressure (mm Hg) 116.3±115.9 115.5±115.2 115.4±115.2 0.0105 

Diastolic blood pressure (mm Hg) 77.8±77.5 77±76.8 76.3±76.2 <.0001 

Total cholesterol (mg/dL) 212.7±210.9 207.2±206.3 200.4±199.4 <.0001 

Fasting blood glucose (mg/dL) 100.7±99.9 98.1±97.7 98.9±96.2 0.7303 

Female (%) 13.52 15.57 19.58 <.0001 

Current smoker (%) 29.38 18.67 9.39 <.0001 

Heavy drink (>14 per week, %) 4.92 5.55 7.7 <.0001 

Diabetes (%) 7.27 4.11 2.71 <.0001 

Hypercholesterolemia (%) 28.67 24.59 20.05 <.0001 

Family history of hypertension (%) 17.81 23.13 28.08 <.0001 
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All participants had at least 2 visits. More than a half had three to five visits. 

And near 4% subjects were followed up for over 10 visits. 3869 (27.1%) subjects had 

hypertension occurred during follow-up and 77.9% of subjects were censored. (Please 

see Table 4.2) 

Table 4.2 Characteristics of ACLS follow-up 
 

Characteristics Frequency and proportion 

Time of visits 
 2 14290 (100%) 

3-5 7404 (51.8%) 

6-10 2158 (15.1%) 

≥11 532 (3.7%) 

Hypertension occurrence counts 3869 (27.1%) 

Censoring 11132 (77.9%) 
 

 

The marginal structural Cox model with un-stabilized weights did not converge. 

The estimates using the stabilized weights can be explained as: taking people who 

were continuously in CRF low group as reference, the hazard of hypertension was of 

no significant different from those who were continuously in CRF middle group. There 

was on average a 23% decrease in hazard of hypertension among subjects who were 

always in CRF high group. The 95% CI was 5%-38%. (Table 4.3) 
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Table 4.3 Hazard ratios and 95% confidence intervals from the marginal structural 
Cox model using stabilized weight 
 

Variables Hazard ratios and 95% CIs Pr 

CRF middle 1.11 (0.83-1.48) 0.4985 

CRF high 0.77 (0.62-0.95) 0.0158 

Overweight/obese 1.55 (1.33-1.80) <.0001 

Age 1.02 (1.01-1.03) <.0001 

Sex (Female) 0.42 (0.20-0.92) 0.0297 

Family history of hypertension 1.20 (1.01-1.42) 0.0431 

Smoking 0.95 (0.78-1.16) 0.6322 

Heavy drinking 1.19 (1.01-1.39) 0.0337 

diabetes 0.75 (0.51-1.10) 0.1378 

hypercholesterolemia 1.04 (0.90-1.20) 0.5811 
 

 

4.3 COMPARING RESULTS OF DIFFERENT MODELS 

4.3.1 The Time-Dependent Cox Model 

One common approach is to fit a time dependent Cox model using baseline 

covariates. We can also fit another model using time-varying confounders. In this part, 

I will compare the estimates resulting from different models. 

4.3.2 Results Comparisons 

Results shown in Table 4.4 were from the time dependent Cox model using 

baseline covariates. After controlling for other covariables at baseline, the hazard ratio 

of hypertension was 0.79 (0.68-0.91) for middle CRF group and 0.62 (0.53-0.71) for 

high CRF group.  
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Table 4.4 Results of the time-dependent Cox PH model using baseline covariates 
 

Variables Hazard ratios and 95% CIs Pr 

CRF middle 0.79 (0.68-0.91) 0.0015 

CRF high 0.62 (0.53-0.71) <.0001 

Overweight/obese 1.33 (1.24-1.42) <.0001 

Age 1.02 (1.02-1.03) <.0001 

Sex (Female) 0.66 (0.60-0.73) <.0001 

Family history of hypertension 1.16 (1.08-1.24) <.0001 

Smoking 0.87 (0.80-0.95) 0.0026 

Heavy drinking 1.19 (1.05-1.34) 0.0064 

diabetes 0.94 (0.81-1.08) 0.376 

hypercholesterolemia 1.05 (0.98-1.13) 0.1548 
 

 

Results of the time-dependent Cox model using time-varying covariates shown 

that comparing to participants in low cardiorespiratory fitness level, those in middle 

and high CRF group had reduced risk of hypertension, the hazard ratios and 95% CIs 

being 0.79 (0.68-0.92) and 0.64 (0.56-0.74), respectively. 

In addition, except the effect of hypercholesterolemia, the hazard ratios of 

other covariates of these two time-dependent models were also similar. Being 

overweight or obese, getting elder, with family history of hypertension and drinking 

heavily were significantly associated with the increased hazard of hypertension. While 

women had lower risk of developing hypertension than men, when controlling for 

other covariates in this study. The effect of high cholesterol on hypertension was 

detected in the time-dependent Cox model using time-varying covariates. However, 

the estimate effect of smoking was not as what we expected. The effect estimate of 

smoking on hypertension was not significant in the marginal structural Cox model. 
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Table 4.5 Results of time-dependent Cox PH model using time-varying covariates 

Variables Hazard ratios and 95% CIs Pr 

CRF middle 0.79 (0.68-0.92) 0.0019 

CRF high 0.64 (0.56-0.74) <.0001 

Overweight/obese 1.61 (1.50-1.72) <.0001 

Age 1.04 (1.03-1.04) <.0001 

Sex (Female) 0.67 (0.61-0.75) <.0001 

Family history of hypertension 1.13 (1.06-1.21) 0.0002 

Smoking 0.73 (0.66-0.82) <.0001 

Heavy drinking 1.45 (1.30-1.62) <.0001 

diabetes 0.99 (0.82-1.18) 0.8885 

hypercholesterolemia 1.25 (1.17-1.34) <.0001 
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CHAPTER 5. DISCUSSION AND CONCLUSION 

Results of the two time-dependent Cox models were similar, which indicated 

that in this ACLS data, the changing of covariates didn't affect the estimations a lot. 

Although estimates from these two models were statistically significant, they didn't 

have the causal interpretations since there was treatment confounder feedback. When 

there is no treatment confounder feedback, estimates of effect can be obtained from 

the time-dependent Cox model. 

To address exposure-confounder feedback, inverse probability weights were 

calculated and applied into the marginal structural Cox model. In this study, there was 

significant decrease of hazard of hypertension for people who were always in high CRF 

comparing to those who were always in low CRF group. These estimates assumed that 

only the cardiorespiratory fitness of the previous visit had direct impact on the current 

CRF level. 

The validity of effect estimates depends on assumptions of no measurement 

errors and no model misspecification. (18) These two conditions are hard to realize in 

the observational studies. For example, family history of hypertension was defined as 

any reported parental hypertension during follow-up period. Parental hypertension 

can be diagnosed several years after subjects entered into this study. 
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Therefore, the family history of hypertension may be underestimated. When 

calculating the IP weights, there are possibility of having model misspecification. If the 

unmeasured confounders had significant effect on the levels of exposure or affect the 

censoring status, then the calculated IP weights can't remove all confounding. Under 

this circumstance, the estimates of casual effect would be biased. 

In a clinical trial, participants would be re-visited after a certain amount of time, 

such as 3 months. The time interval between two visits would be regular. However, in 

the ALCS study, the follow-up was not based on the same intervals. For example, after 

a subject entering into study, the second visit was 2 years later, the third visit was 5 

years after. Ignoring different visit intervals and only using information of number of 

visit, assumes that the effect of overweight status at visit 1 on visit 2 (2 years ago) is 

same as the effect of overweight at visit 2 on visit 3 (5 years ago), which is not 

biologically reasonable. Considering the durations between visits can improve the 

calculation of the inverse probability weight. 

The Ipw R package has function ipwtm() to estimate time-varying inverse 

probability weights. The exposure can be binomial, multinomial, ordinal or continuous. 

Estimation of weights can be calculated by using all visits, or only visits until the 

exposure level first switches form one level to another. After this switch, weights are 

held constant. Currently, only for binary exposure, all visits can be used.  For some 

clinical trials where after patients initiating the new treatment, they will keep taking it. 

In this case, it makes sense that weights calculated until the first switch and are 

constant for the rest visits. However, in the ACLS data, the level of cardiorespiratory 
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fitness can change during the whole follow-up. The ipwtm() function can't be used to 

calculate the time-varying weights. Further work should be done to expand this R 

package to support such data.  

In conclusion, to get unbiased estimates of causal effects from the 

observational study, exchangeability, positivity, consistency, no measurement error 

and no model misspecification need to be hold. Marginal Cox model can be applied in 

longitudinal data to deal with the treatment-confounder feedback. Estimates and 

variance with stabilized weights perform better than the un-stabilized weights. 
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APPENDIX A SOURCE CODES 

SAS code, calculating IP weights: 

%macro weight(); 
/* Model 1 */ 
proc logistic data=sim desc noprint; 
        model A = am1; 
        output out=tr_top p=ptr_num; 
run; 
/* Model 2 */ 
proc logistic data=sim desc noprint; 
        model A = am1 l lm1; 
        output out=tr_bot p=ptr_den; 
run; 
/* Model 3 */ 
proc logistic data=sim noprint; 
        model censor_r = am1; 
 output out=cen_top p=pcen_num; 
run; 
/* Model 4 */ 
proc logistic data=sim noprint; 
        model censor_r = am1 lm1 lm2; 
 output out=cen_bot p=pcen_den; 
run; 
proc sort data=tr_top; by id tpoint; run; 
proc sort data=tr_bot; by id tpoint; run; 
proc sort data=cen_top; by id tpoint; run; 
proc sort data=cen_bot; by id tpoint; run; 
data main_w; 
        merge tr_top tr_bot cen_top cen_bot; 
        by ID tpoint; 
if a=1 then ptr_num=ptr_num; 
if a=0 then ptr_num=1-ptr_num; 
if a=1 then ptr_den=ptr_den; 
if a=0 then ptr_den=1-ptr_den; 
if first.id then do;  
tr_num=1;
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tr_den=1; 
cen_num=1; 
cen_den=1; 
end; 
retain tr_num tr_den cen_num cen_den; 
tr_num=tr_num*ptr_num; 
tr_den=tr_den*ptr_den; 
cen_num=cen_num*pcen_num; 
cen_den=cen_den*pcen_den; 
 
wc=1/(tr_den*cen_den); 
swc=(tr_num*cen_num)/(tr_den*cen_den); 
w=1/(tr_den); 
sw=(tr_num)/(tr_den); 
run; 
%mend; 
/*%weight();*/ 
%macro data(n=, subjects=,   psi1= , lam=, out=); 
%let c=1; 
%do i=1 %to &n; 
%simulate(subjects=&subjects,  psi1=&psi1 , lam=&lam); 
%weight(); 
proc export data=main_w 
   outfile=%unquote(%str(%')C:\sim\&out\a&c%str(.)csv%str(%')) 
   dbms=csv 
   replace; 
run; 
%let c=%eval(&c+1); 
%end; 
%mend; 
%data(n=500, psi1=0 , lam=0.01, subjects=500,  out=p00_lmd001_n500); 
%data(n=500, psi1=0 , lam=0.1, subjects=500,  out=p00_lmd01_n500); 
%data(n=500, psi1=0 , lam=0.01, subjects=2500,  out=p00_lmd001_n2500); 
%data(n=500, psi1=0 , lam=0.1, subjects=2500,  out=p00_lmd01_n2500); 
%data(n=500, psi1=-0.3 , lam=0.01, subjects=500,  out=p-03_lmd001_n500); 
%data(n=500, psi1=-0.3 , lam=0.1, subjects=500,  out=p-03_lmd01_n500); 
%data(n=500, psi1=-0.3 , lam=0.01, subjects=2500,  out=p-03_lmd001_n2500); 
%data(n=500, psi1=-0.3 , lam=0.1, subjects=2500,  out=p-03_lmd01_n2500); 

R code, fitting marginal Cox models:  

library('survival') 

simu<-500 #1fixed number 

truev<- 0 #2true treatment effect, fai 
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est<-matrix(0, simu,9) 

est1<-matrix(0, simu,6) 

for(i in 1:simu){ 

x <- read.csv(paste("C:/sim/p00_lmd001_n500/a", i, ".csv", sep=""))#3location  

a <- subset(x, tpoint==1, select = c(id, L)) 

a$L0 <-a$L 

a <- subset(a, select=c(id, L0)) 

x <-merge(x, a, by = "id") 

m1<-CoxPH(Surv(tpoint2,tpoint,Y)~A+cluster(id), data=x, weights=w) 

m2<-CoxPH(Surv(tpoint2,tpoint,Y)~A+cluster(id), data=x, weights=wc) 

m3<-CoxPH(Surv(tpoint2,tpoint,Y)~A+cluster(id), data=x, weights=sw) 

m4<-CoxPH(Surv(tpoint2,tpoint,Y)~A+cluster(id), data=x, weights=swc) 

est[i,c(1,2)] <- c(m1$coef,m1$var) 

est[i,c(3,4)] <- c(m2$coef,m2$var) 

est[i,c(5,6)] <- c(m3$coef,m3$var) 

est[i,c(7,8)] <- c(m4$coef,m4$var) 

est[i,9] <- sum(x$Y)/500 #4number of id, 500 or 2500 

m5<-CoxPH(Surv(tpoint2,tpoint,Y)~A+L0+cluster(id), data=x) 

m6<-CoxPH(Surv(tpoint2,tpoint,Y)~A+L+cluster(id), data=x) 

m7<-CoxPH(Surv(tpoint2,tpoint,Y)~A+L+Lm1+cluster(id), data=x) 

est1[i,c(1,2)] <- c(m5$coef[1],m5$var[1,1]) 

est1[i,c(3,4)] <- c(m6$coef[1],m6$var[1,1]) 

est1[i,c(5,6)] <- c(m7$coef[1],m7$var[1,1]) 

} 

betabar<-c (mean(est[,1]),mean(est[,3]),mean(est[,5]),mean(est[,7])) 

emp_sd<-c(sqrt(var(est[,1])),sqrt(var(est[,3])),sqrt(var(est[,5])),sqrt(var(est[,7]))) 

sd <-c (mean(est[,2]),mean(est[,4]),mean(est[,6]),mean(est[,8])) 

bias<-betabar-truev 
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per_bias<-100*bias/truev 

#std_bias<-100*bias/betastd 

MSE<-bias^2+emp_sd^2 

coverage<-c( 

sum(as.numeric((truev<est[,1]+qnorm(0.975)*sqrt(est[,2]) & truev>est[,1]-
qnorm(0.975)*sqrt(est[,2]))))/simu , 

sum(as.numeric((truev<est[,3]+qnorm(0.975)*sqrt(est[,4]) & truev>est[,3]-
qnorm(0.975)*sqrt(est[,4]))))/simu ,  

sum(as.numeric((truev<est[,5]+qnorm(0.975)*sqrt(est[,6]) & truev>est[,5]-
qnorm(0.975)*sqrt(est[,6]))))/simu , 

sum(as.numeric((truev<est[,7]+qnorm(0.975)*sqrt(est[,8]) & truev>est[,7]-
qnorm(0.975)*sqrt(est[,8]))))/simu 

) 

censor_rate<- 1-mean(est[,9]) 
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